Molecular structure of RADA16-I designer self-assembling peptide nanofibers.
نویسندگان
چکیده
The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and three-dimensional cell culture. The RADA16-I amino acid sequence has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for (13)C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine side chains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by measured (13)C-(13)C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows cross-strand staggering of oppositely charged arginine and aspartate side chains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine side chain were observed and could be attributed to multiple configurations of side chain packing within a single scheme for intermolecular packing.
منابع مشابه
The Effect of Self-Assembling Peptide RADA16-I on the Growth of Human Leukemia Cells in Vitro and in Nude Mice
Nanofiber scaffolds formed by self-assembling peptide RADA16-I have been used for the study of cell proliferation to mimic an extracellular matrix. In this study, we investigated the effect of RADA16-I on the growth of human leukemia cells in vitro and in nude mice. Self-assembly assessment showed that RADA16-I molecules have excellent self-assembling ability to form stable nanofibers. MTT assa...
متن کاملDesigner D-form self-assembling peptide scaffolds promote the proliferation and migration of rat bone marrow-derived mesenchymal stem cells
Self-assembling peptide (SAP) nanofiber hydrogel scaffolds have become increasingly important in tissue engineering due to their outstanding bioactivity and biodegradability. However, there is an initial concern on their long-term clinical use, since SAPs made of L-form amino acid sequences are sensitive to enzymatic degradation. In this study, we present a designer SAP, D-RADA16, made of all D...
متن کاملDesigner self-assembling hydrogel scaffolds can impact skin cell proliferation and migration
There is a need to develop economical, efficient and widely available therapeutic approaches to enhance the rate of skin wound healing. The optimal outcome of wound healing is restoration to the pre-wound quality of health. In this study we investigate the cellular response to biological stimuli using functionalized nanofibers from the self-assembling peptide, RADA16. We demonstrate that adding...
متن کاملSlow and sustained release of active cytokines from self-assembling peptide scaffolds.
Controlling the cellular microenvironment is thought to be critical for the successful application of biomaterials for regenerative medicine strategies. Self-assembling peptides are proving to be a promising platform for a variety of regenerative medicine applications. Specifically, RADA16-I self-assembling peptides have been successfully used for 3D cell culture, accelerated wound healing, and...
متن کاملA self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs
Mechanical strength of nanofiber scaffolds formed by the self-assembling peptide RADA16-I or its derivatives is not very good and limits their application. To address this problem, we inserted spidroin uncrystalline motifs, which confer incomparable elasticity and hydrophobicity to spider silk GGAGGS or GPGGY, into the C-terminus of RADA16-I to newly design two peptides: R3 (n-RADARADARADARADA-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2013